References
J. Becker, R. Flückiger, M. Reum, F. Büchi, F. Marone, and M. Stampanoni, Determination of Material Properties of Gas Diffusion Layers: Experiments and Simulations Using Phase Contrast Tomographic Microscopy, Journal of The Electrochemical Society, Vol. 156, No 10, pp B1175-B1181 (2009), https://dx.doi.org/10.1149/1.3176876
J. Becker, V. Schulz, and A. Wiegmann, Numerical Determination of Two-Phase Material Parameters of a Gas Diffusion Layer Using Tomography Images, Journal of Fuel Cell Science and Technology, No. 2, Vol. 5, pp 21006-21014 (2008), https://doi.org/10.1115/1.2821600
A.K. Hasselström, and U.E. Nilsson, Thermal Contact Conductance in Bolted Joints (2012)
J.P. Holman, Heat Transfer, 8th Edition (1997)
N. Jeanvoinea, A. Velichko, C. Selzner, and F. Mücklich, Nanotomography of electrical contacts - new insights by high resolution 3D analysis of local material degradation, Eur. Phys. J. Appl. Phys. 49, 22907 (2010), https://doi.org/10.1051/epjap/2009210
Mattila et al., A prospect for computing in porous material research: very large fluid flow simulations, Journal of Computational Science 15, pp. 62-76 (2016)
A. Pfrang, D. Veyret, F. Sieker, and G. Tsotridis, X-ray computed tomography of gas diffusion layers of PEM fuel cells: Calculation of thermal conductivity, International Journal of Hydrogen Energy, 35, No.8, pp 3751-3757 (2010), https://doi.org/10.1016/j.ijhydene.2010.01.085
V.P. Schulz, P.P. Mukherjee, J. Becker, A. Wiegmann, and C.Y. Wang, Modeling of Two-phase Behavior in the Gas Diffusion Medium of Polymer Electrolyte Fuel Cells via Full Morphology Approach, Journal of the Electrochemical Society, Issue 4, Vol. 154, pp B419-B426 (2007), https://dx.doi.org/10.1149/1.2472547
H. Thoemen, T. Walther, and A. Wiegmann, 3D Simulation of Macroscopic heat and mass transfer properties from the microstructure of wood fibre networks, Composites Science and Technology, No. 3-4, Vol. 68, pp 608-616 (2008), https://doi.org/10.1016/j.compscitech.2007.10.014
A. Velichko, Quantitative 3D characterization of graphite morphologies in cast iron using FIB microstructure tomography, Dissertation, Saarland University (2008), http://dx.doi.org/10.22028/D291-22506
A. Velichko, A. Wiegmann, and F. Mücklich, Estimation of the effective conductivities of complex cast iron microstructures using FIB-tomographic analysis, Acta Materialia, Vol. 57, pp 5023-5035 (2009), https://doi.org/10.1016/j.actamat.2009.07.004
D. Veyret and G. Tsotridis, Numerical determination of the effective thermal conductivity of fibrous materials. Application to proton exchange membrane fuel cell gas diffusion layers, Journal of Power Sources Vol. 195, No. 5, pp 1302-1307 (2010), https://doi.org/10.1016/j.jpowsour.2009.09.028
A. Wiegmann and A. Zemitis, EJ-HEAT: A Fast Explicit Jump Harmonic Averaging Solver for the Effective Heat Conductivity of Composite Materials, Report of the Fraunhofer ITWM, Nr. 94 (2006)
N. Zamel, X. Li, J. Shen, J. Becker, and A. Wiegmann, Estimating effective thermal conductivity in carbon paper diffusion media, Chemical Engineering Science, Vol 65, Issue 13, pp 3994-4006 (2010), https://doi.org/10.1016/j.ces.2010.03.047