References
B. Ahrenholz, Prediction of capillary hysteresis in a porous material using lattice-Boltzmann methods and comparison to experimental data and a morphological pore net-work model, Advances in Water Resources 31, p. 1151–1173 (2008), https://doi.org/10.1016/j.advwatres.2008.03.009
T. Akai, Pore-scale numerical simulation of low salinity water flooding using the lattice Boltzmann method; Journal of Colloid and Interface Science 566(15); p. 444–453 (2020), https://doi.org/10.1016/j.jcis.2020.01.065
J. Crank, The Mathematics of Diffusion, 2nd Edition; Oxford University Press, Oxford (1975)
N. Epstein, On tortuosity and the tortuosity factor in flow and diffusion through porous media, Chemical Engineering Science 44(3); p. 777–779 (1989), https://doi.org/10.1016/0009-2509(89)85053-5
A. Fick, On liquid diffusion; Journal of Theoretical Experimental and Applied Physics 10; p. 30–39 (1855)
R.D. Hazlett, Simulation of capillary-dominated displacements in micro-tomographic images of reservoir rocks, Transport in Porous Media 20; p. 21–25 (1995), https://doi.org/10.1007/BF00616924
M. Hilpert, C. Miller, Pore-morphology-based simulation of drainage in totally wetting porous media, Adv. Water Resources, 24, pp. 243 – 255 (2001), https://doi.org/10.1016/S0309-1708(00)00056-7
J.P. Holman, Heat transfer; 8th Edition; New York: McGraw–Hill (1997)
L. Holzer, P. Marmet, M. Fingerle, A. Wiegmann, M. Neumann, V. Schmidt, Tortuosity and Microstructure Effects in Porous Media; p. 27–31 (2023), https://doi.org/10.1007/978-3-031-30477-4
S. Linden, A. Wiegmann, H. Hagen, The LIR space partitioning system applied to the Stokes equations, Graphical Models 82; p. 58–66 (2015), https://doi.org/10.1016/j.gmod.2015.06.003
X. Liu, A. Zhou, S. Shen, J. Li, Modeling drainage in porous media considering locally variable contact angle based on pore morphology method, Journal of Hydrology 612B, 128157 (2022), https://doi.org/10.1016/j.jhydrol.2022.128157
F. Lomeland, E. Ebeltoft, A New Versatile Relative Permeability Correlation, Presented at the International Symposium of the Society of Core Analysts held in Toronto, Canada (2005)
G.S. Ohm, Die galvanische Kette, mathematisch bearbeitet, Mit einem Figurenblatte; Berlin (1827)
S.V. Partankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, New York (1980)
A. Pfrang, D. Veyret, F. Sieker and G. Tsotridis, X-ray computed tomography of gas diffusion layers of PEM fuel cells: Calculation of thermal conductivity, International Journal of Hydrogen Energy, 35, No. 8, pp 3751 – 3757 (2010)
V.P. Schulz, J. Becker, A. Wiegmann, Numerical determination of two-phase material parameters of a gas diffusion layer using tomography images, J. Fuel Cell Sci. Tech. 5 (2008), https://doi.org/10.1115/1.2821600
V.P. Schulz, E. A. Wargo, and E. Kumbur, Pore-Morphology-Based Simulation of Drainage in Porous Media Featuring a Locally Variable Contact Angle, Transport in Porous Media, 107 (2015), pp. 13 – 25, https://doi.org/10.1007/s11242-014-0422-4
D. Silin, T. Patzek, Pore space morphology analysis using maximal inscribed spheres, Physica A 371, p. 336–360 (2006), https://doi.org/10.1016/j.physa.2006.04.048
D. Silin, L. Tomutsa, S. Benson, T. Patzek, Microtomography and Pore-Scale Modeling of Two-Phase Fluid Distribution, Transport in Porous Media 86, p. 495–515 (2011), https://doi.org/10.1007/s11242-010-9636-2
J.H.M. Thomeer, Introduction of a Pore Geometrical Factor defined by the Capillary Pressure Curve, Pet. Technol. 12 (3): 73-77. SPE-1324-G (1960), https://doi.org/10.2118/1324-G
D.J. Tritton, Physical fluid dynamics (2nd ed.), Oxford: Claredon Press; ISBN 978-0198544937 (2006)
H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Pearson, Prentice Hall, 2nd Edition (2007)
E.W. Washburn, The dynamics of capillary flow; Physical Review 17(3), p. 273–283 (1921), https://dx.doi.org/10.1103/PhysRev.17.273
A. Wiegmann, Computation of the permeability of porous materials from their microstructure by FFF-Stokes, Report of the Fraunhofer Institute for Industrial Mathematics (ITWM) Nr.129 (2007)
A. Wiegmann, A. Zemitis, EJ-Heat: A fast explicit jump harmonic averaging solver for the effective heat conductivity of composite materials; Report of the Fraunhofer Institute for Industrial Mathematics (ITWM) Nr. 94 (2006