References
V. Chandra, A. I. Al-Naimi, Petroleum Engineering Research Center, King Abdullah University of Science and Technology
D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2016), https://doi.org/10.48550/arXiv.1412.6980
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, PyTorch: An Imperative Style, High-Performance Deep Learning Library, arXiv:1912.01703 [cs.LG] (2019), https://doi.org/10.48550/arXiv.1912.01703
O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation, arXiv:1505.04597 (2015), https://doi.org/10.48550/arXiv.1505.04597
S. Ruder, An overview of gradient descent optimization algorithms, arXiv:1609.04747 (2016), https://doi.org/10.48550/arXiv.1609.04747
I.M. Sobol, On the Distribution of points in a cube and the approximate evaluation of integrals, USSR Computational Mathematics and Mathematical Physics (1967), https://doi.org/10.1016/0041-5553(67)90144-9
A. A. Taha, A. Hanbury, Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool, BMC Medical Imaging (2015), https://doi.org/10.1186/s12880-015-0068-x